3.665 \(\int \frac{\sqrt{\sec (c+d x)}}{(a+b \sec (c+d x))^{5/2}} \, dx\)

Optimal. Leaf size=302 \[ \frac{2 \left (3 a^2-2 b^2\right ) \sqrt{\sec (c+d x)} \sqrt{\frac{a \cos (c+d x)+b}{a+b}} \text{EllipticF}\left (\frac{1}{2} (c+d x),\frac{2 a}{a+b}\right )}{3 a^2 d \left (a^2-b^2\right ) \sqrt{a+b \sec (c+d x)}}-\frac{2 b \left (5 a^2-b^2\right ) \sin (c+d x) \sqrt{\sec (c+d x)}}{3 a d \left (a^2-b^2\right )^2 \sqrt{a+b \sec (c+d x)}}-\frac{2 b \sin (c+d x) \sqrt{\sec (c+d x)}}{3 d \left (a^2-b^2\right ) (a+b \sec (c+d x))^{3/2}}+\frac{4 b \left (3 a^2-b^2\right ) \sqrt{a+b \sec (c+d x)} E\left (\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right )}{3 a^2 d \left (a^2-b^2\right )^2 \sqrt{\sec (c+d x)} \sqrt{\frac{a \cos (c+d x)+b}{a+b}}} \]

[Out]

(2*(3*a^2 - 2*b^2)*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*a)/(a + b)]*Sqrt[Sec[c + d*x]]
)/(3*a^2*(a^2 - b^2)*d*Sqrt[a + b*Sec[c + d*x]]) + (4*b*(3*a^2 - b^2)*EllipticE[(c + d*x)/2, (2*a)/(a + b)]*Sq
rt[a + b*Sec[c + d*x]])/(3*a^2*(a^2 - b^2)^2*d*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*Sqrt[Sec[c + d*x]]) - (2*b*S
qrt[Sec[c + d*x]]*Sin[c + d*x])/(3*(a^2 - b^2)*d*(a + b*Sec[c + d*x])^(3/2)) - (2*b*(5*a^2 - b^2)*Sqrt[Sec[c +
 d*x]]*Sin[c + d*x])/(3*a*(a^2 - b^2)^2*d*Sqrt[a + b*Sec[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.644761, antiderivative size = 302, normalized size of antiderivative = 1., number of steps used = 9, number of rules used = 9, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.36, Rules used = {3843, 4100, 4035, 3856, 2655, 2653, 3858, 2663, 2661} \[ -\frac{2 b \left (5 a^2-b^2\right ) \sin (c+d x) \sqrt{\sec (c+d x)}}{3 a d \left (a^2-b^2\right )^2 \sqrt{a+b \sec (c+d x)}}-\frac{2 b \sin (c+d x) \sqrt{\sec (c+d x)}}{3 d \left (a^2-b^2\right ) (a+b \sec (c+d x))^{3/2}}+\frac{2 \left (3 a^2-2 b^2\right ) \sqrt{\sec (c+d x)} \sqrt{\frac{a \cos (c+d x)+b}{a+b}} F\left (\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right )}{3 a^2 d \left (a^2-b^2\right ) \sqrt{a+b \sec (c+d x)}}+\frac{4 b \left (3 a^2-b^2\right ) \sqrt{a+b \sec (c+d x)} E\left (\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right )}{3 a^2 d \left (a^2-b^2\right )^2 \sqrt{\sec (c+d x)} \sqrt{\frac{a \cos (c+d x)+b}{a+b}}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[Sec[c + d*x]]/(a + b*Sec[c + d*x])^(5/2),x]

[Out]

(2*(3*a^2 - 2*b^2)*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*a)/(a + b)]*Sqrt[Sec[c + d*x]]
)/(3*a^2*(a^2 - b^2)*d*Sqrt[a + b*Sec[c + d*x]]) + (4*b*(3*a^2 - b^2)*EllipticE[(c + d*x)/2, (2*a)/(a + b)]*Sq
rt[a + b*Sec[c + d*x]])/(3*a^2*(a^2 - b^2)^2*d*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*Sqrt[Sec[c + d*x]]) - (2*b*S
qrt[Sec[c + d*x]]*Sin[c + d*x])/(3*(a^2 - b^2)*d*(a + b*Sec[c + d*x])^(3/2)) - (2*b*(5*a^2 - b^2)*Sqrt[Sec[c +
 d*x]]*Sin[c + d*x])/(3*a*(a^2 - b^2)^2*d*Sqrt[a + b*Sec[c + d*x]])

Rule 3843

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> -Simp[(b*d*
Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 1))/(f*(m + 1)*(a^2 - b^2)), x] + Dist[1/((m +
 1)*(a^2 - b^2)), Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 1)*Simp[b*d*(n - 1) + a*d*(m + 1)*Csc
[e + f*x] - b*d*(m + n + 1)*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && Lt
Q[m, -1] && LtQ[0, n, 1] && IntegersQ[2*m, 2*n]

Rule 4100

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[((A*b^2 - a*b*B + a^2*C)*Cot[e + f*x]*(a +
 b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n)/(a*f*(m + 1)*(a^2 - b^2)), x] + Dist[1/(a*(m + 1)*(a^2 - b^2)), I
nt[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n*Simp[a*(a*A - b*B + a*C)*(m + 1) - (A*b^2 - a*b*B + a^2*C)*
(m + n + 1) - a*(A*b - a*B + b*C)*(m + 1)*Csc[e + f*x] + (A*b^2 - a*b*B + a^2*C)*(m + n + 2)*Csc[e + f*x]^2, x
], x], x] /; FreeQ[{a, b, d, e, f, A, B, C, n}, x] && NeQ[a^2 - b^2, 0] && LtQ[m, -1] &&  !(ILtQ[m + 1/2, 0] &
& ILtQ[n, 0])

Rule 4035

Int[(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(
b_.) + (a_)]), x_Symbol] :> Dist[A/a, Int[Sqrt[a + b*Csc[e + f*x]]/Sqrt[d*Csc[e + f*x]], x], x] - Dist[(A*b -
a*B)/(a*d), Int[Sqrt[d*Csc[e + f*x]]/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && Ne
Q[A*b - a*B, 0] && NeQ[a^2 - b^2, 0]

Rule 3856

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)], x_Symbol] :> Dist[Sqrt[a +
 b*Csc[e + f*x]]/(Sqrt[d*Csc[e + f*x]]*Sqrt[b + a*Sin[e + f*x]]), Int[Sqrt[b + a*Sin[e + f*x]], x], x] /; Free
Q[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 2655

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2653

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*Sqrt[a + b]*EllipticE[(1*(c - Pi/2 + d*x)
)/2, (2*b)/(a + b)])/d, x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 3858

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[(Sqrt[d*
Csc[e + f*x]]*Sqrt[b + a*Sin[e + f*x]])/Sqrt[a + b*Csc[e + f*x]], Int[1/Sqrt[b + a*Sin[e + f*x]], x], x] /; Fr
eeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 2663

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 2661

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, (2*b)
/(a + b)])/(d*Sqrt[a + b]), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rubi steps

\begin{align*} \int \frac{\sqrt{\sec (c+d x)}}{(a+b \sec (c+d x))^{5/2}} \, dx &=-\frac{2 b \sqrt{\sec (c+d x)} \sin (c+d x)}{3 \left (a^2-b^2\right ) d (a+b \sec (c+d x))^{3/2}}-\frac{2 \int \frac{-\frac{b}{2}-\frac{3}{2} a \sec (c+d x)+b \sec ^2(c+d x)}{\sqrt{\sec (c+d x)} (a+b \sec (c+d x))^{3/2}} \, dx}{3 \left (a^2-b^2\right )}\\ &=-\frac{2 b \sqrt{\sec (c+d x)} \sin (c+d x)}{3 \left (a^2-b^2\right ) d (a+b \sec (c+d x))^{3/2}}-\frac{2 b \left (5 a^2-b^2\right ) \sqrt{\sec (c+d x)} \sin (c+d x)}{3 a \left (a^2-b^2\right )^2 d \sqrt{a+b \sec (c+d x)}}+\frac{4 \int \frac{\frac{1}{2} b \left (3 a^2-b^2\right )+\frac{1}{4} a \left (3 a^2+b^2\right ) \sec (c+d x)}{\sqrt{\sec (c+d x)} \sqrt{a+b \sec (c+d x)}} \, dx}{3 a \left (a^2-b^2\right )^2}\\ &=-\frac{2 b \sqrt{\sec (c+d x)} \sin (c+d x)}{3 \left (a^2-b^2\right ) d (a+b \sec (c+d x))^{3/2}}-\frac{2 b \left (5 a^2-b^2\right ) \sqrt{\sec (c+d x)} \sin (c+d x)}{3 a \left (a^2-b^2\right )^2 d \sqrt{a+b \sec (c+d x)}}+\frac{\left (3 a^2-2 b^2\right ) \int \frac{\sqrt{\sec (c+d x)}}{\sqrt{a+b \sec (c+d x)}} \, dx}{3 a^2 \left (a^2-b^2\right )}+\frac{\left (2 b \left (3 a^2-b^2\right )\right ) \int \frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{\sec (c+d x)}} \, dx}{3 a^2 \left (a^2-b^2\right )^2}\\ &=-\frac{2 b \sqrt{\sec (c+d x)} \sin (c+d x)}{3 \left (a^2-b^2\right ) d (a+b \sec (c+d x))^{3/2}}-\frac{2 b \left (5 a^2-b^2\right ) \sqrt{\sec (c+d x)} \sin (c+d x)}{3 a \left (a^2-b^2\right )^2 d \sqrt{a+b \sec (c+d x)}}+\frac{\left (\left (3 a^2-2 b^2\right ) \sqrt{b+a \cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{1}{\sqrt{b+a \cos (c+d x)}} \, dx}{3 a^2 \left (a^2-b^2\right ) \sqrt{a+b \sec (c+d x)}}+\frac{\left (2 b \left (3 a^2-b^2\right ) \sqrt{a+b \sec (c+d x)}\right ) \int \sqrt{b+a \cos (c+d x)} \, dx}{3 a^2 \left (a^2-b^2\right )^2 \sqrt{b+a \cos (c+d x)} \sqrt{\sec (c+d x)}}\\ &=-\frac{2 b \sqrt{\sec (c+d x)} \sin (c+d x)}{3 \left (a^2-b^2\right ) d (a+b \sec (c+d x))^{3/2}}-\frac{2 b \left (5 a^2-b^2\right ) \sqrt{\sec (c+d x)} \sin (c+d x)}{3 a \left (a^2-b^2\right )^2 d \sqrt{a+b \sec (c+d x)}}+\frac{\left (\left (3 a^2-2 b^2\right ) \sqrt{\frac{b+a \cos (c+d x)}{a+b}} \sqrt{\sec (c+d x)}\right ) \int \frac{1}{\sqrt{\frac{b}{a+b}+\frac{a \cos (c+d x)}{a+b}}} \, dx}{3 a^2 \left (a^2-b^2\right ) \sqrt{a+b \sec (c+d x)}}+\frac{\left (2 b \left (3 a^2-b^2\right ) \sqrt{a+b \sec (c+d x)}\right ) \int \sqrt{\frac{b}{a+b}+\frac{a \cos (c+d x)}{a+b}} \, dx}{3 a^2 \left (a^2-b^2\right )^2 \sqrt{\frac{b+a \cos (c+d x)}{a+b}} \sqrt{\sec (c+d x)}}\\ &=\frac{2 \left (3 a^2-2 b^2\right ) \sqrt{\frac{b+a \cos (c+d x)}{a+b}} F\left (\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right ) \sqrt{\sec (c+d x)}}{3 a^2 \left (a^2-b^2\right ) d \sqrt{a+b \sec (c+d x)}}+\frac{4 b \left (3 a^2-b^2\right ) E\left (\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right ) \sqrt{a+b \sec (c+d x)}}{3 a^2 \left (a^2-b^2\right )^2 d \sqrt{\frac{b+a \cos (c+d x)}{a+b}} \sqrt{\sec (c+d x)}}-\frac{2 b \sqrt{\sec (c+d x)} \sin (c+d x)}{3 \left (a^2-b^2\right ) d (a+b \sec (c+d x))^{3/2}}-\frac{2 b \left (5 a^2-b^2\right ) \sqrt{\sec (c+d x)} \sin (c+d x)}{3 a \left (a^2-b^2\right )^2 d \sqrt{a+b \sec (c+d x)}}\\ \end{align*}

Mathematica [A]  time = 1.18405, size = 196, normalized size = 0.65 \[ \frac{2 \sec ^{\frac{5}{2}}(c+d x) (a \cos (c+d x)+b) \left (\frac{\left (\frac{a \cos (c+d x)+b}{a+b}\right )^{3/2} \left (\left (-3 a^2 b+3 a^3-2 a b^2+2 b^3\right ) \text{EllipticF}\left (\frac{1}{2} (c+d x),\frac{2 a}{a+b}\right )+\left (6 a^2 b-2 b^3\right ) E\left (\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right )\right )}{(a-b)^2}+\frac{a b \sin (c+d x) \left (\left (2 a b^2-6 a^3\right ) \cos (c+d x)-5 a^2 b+b^3\right )}{\left (a^2-b^2\right )^2}\right )}{3 a^2 d (a+b \sec (c+d x))^{5/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[Sec[c + d*x]]/(a + b*Sec[c + d*x])^(5/2),x]

[Out]

(2*(b + a*Cos[c + d*x])*Sec[c + d*x]^(5/2)*((((b + a*Cos[c + d*x])/(a + b))^(3/2)*((6*a^2*b - 2*b^3)*EllipticE
[(c + d*x)/2, (2*a)/(a + b)] + (3*a^3 - 3*a^2*b - 2*a*b^2 + 2*b^3)*EllipticF[(c + d*x)/2, (2*a)/(a + b)]))/(a
- b)^2 + (a*b*(-5*a^2*b + b^3 + (-6*a^3 + 2*a*b^2)*Cos[c + d*x])*Sin[c + d*x])/(a^2 - b^2)^2))/(3*a^2*d*(a + b
*Sec[c + d*x])^(5/2))

________________________________________________________________________________________

Maple [B]  time = 0.277, size = 2070, normalized size = 6.9 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(5/2),x)

[Out]

2/3/d/((a-b)/(a+b))^(1/2)/(a+b)^2/(a-b)/a^2*(-cos(d*x+c)^2*((a-b)/(a+b))^(1/2)*a^2*b^2-5*a^2*b^2*((a-b)/(a+b))
^(1/2)+a*b^3*((a-b)/(a+b))^(1/2)-3*cos(d*x+c)*sin(d*x+c)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(c
os(d*x+c)+1))^(1/2)*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a^4-6*Ellip
ticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a^2*b^2*(1/(a+b)*(b+a*cos(d*x+c))/(c
os(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)-3*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*
x+c),(-(a+b)/(a-b))^(1/2))*a^3*b*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*sin(
d*x+c)+3*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a^2*b^2*(1/(a+b)*(b+a*
cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)+2*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b)
)^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a*b^3*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+
1))^(1/2)*sin(d*x+c)+2*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*b^4*(1/(
a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)+2*cos(d*x+c)*sin(d*x+c)*Ellipt
icE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)
+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*b^4-2*cos(d*x+c)*((a-b)/(a+b))^(1/2)*b^4-6*cos(d*x+c)^2*sin(d*x+c)*Ellipti
cE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+
1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*a^3*b+2*cos(d*x+c)^2*sin(d*x+c)*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/
2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*a
*b^3+2*b^4*((a-b)/(a+b))^(1/2)+2*cos(d*x+c)*((a-b)/(a+b))^(1/2)*a*b^3+6*cos(d*x+c)^2*((a-b)/(a+b))^(1/2)*a^3*b
-3*cos(d*x+c)^2*((a-b)/(a+b))^(1/2)*a*b^3-6*cos(d*x+c)*((a-b)/(a+b))^(1/2)*a^3*b+6*cos(d*x+c)*((a-b)/(a+b))^(1
/2)*a^2*b^2+2*cos(d*x+c)^2*sin(d*x+c)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)
*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a^2*b^2-3*cos(d*x+c)^2*sin(d*x
+c)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*EllipticF((-1+cos(d*x+c))*((a-b)/
(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a^4+3*cos(d*x+c)^2*sin(d*x+c)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x
+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))
^(1/2))*a^3*b-6*cos(d*x+c)*sin(d*x+c)*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^
(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*a^3*b-6*cos(d*x+c)*sin(d*x+c)*
EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(
d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*a^2*b^2+2*cos(d*x+c)*sin(d*x+c)*EllipticE((-1+cos(d*x+c))*((a-b)/(a+
b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^
(1/2)*a*b^3+5*cos(d*x+c)*sin(d*x+c)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*E
llipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a^2*b^2+2*cos(d*x+c)*sin(d*x+c)*
(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b
))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a*b^3)*cos(d*x+c)*(1/cos(d*x+c))^(1/2)*((b+a*cos(d*x+c))/cos(d*x+c))
^(1/2)/sin(d*x+c)/(b+a*cos(d*x+c))^2

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{\sec \left (d x + c\right )}}{{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

integrate(sqrt(sec(d*x + c))/(b*sec(d*x + c) + a)^(5/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{b \sec \left (d x + c\right ) + a} \sqrt{\sec \left (d x + c\right )}}{b^{3} \sec \left (d x + c\right )^{3} + 3 \, a b^{2} \sec \left (d x + c\right )^{2} + 3 \, a^{2} b \sec \left (d x + c\right ) + a^{3}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

integral(sqrt(b*sec(d*x + c) + a)*sqrt(sec(d*x + c))/(b^3*sec(d*x + c)^3 + 3*a*b^2*sec(d*x + c)^2 + 3*a^2*b*se
c(d*x + c) + a^3), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**(1/2)/(a+b*sec(d*x+c))**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{\sec \left (d x + c\right )}}{{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(5/2),x, algorithm="giac")

[Out]

integrate(sqrt(sec(d*x + c))/(b*sec(d*x + c) + a)^(5/2), x)